

Class: SS1

# Federal Ministry of Education 

Federal Government Girls' College
Abuloma - Port Harcourt.
Mid-Term Assignment

## Section A: Circular Motion

1. Define the following terms;
a. Circular Motion
b. Angular velocity/Speed
c. Centripetal force
2. Calculate the magnitude of the centripetal force on a particle of mass $5.0 \times 10^{-6} \mathrm{~kg}$ revolving round the earth with a radial acceleration of $6.0 \times 10^{7} \mathrm{~ms}^{-2}$
3. A stone is whirled round a circular part of radius 15 cm . If the stone makes 30 oscillations in 10seconds, calculate;
a. Angular speed
b. Tangential velocity
c. Centripetal acceleration of the stone (take $\pi=3.14$ )

## Section B: Work, Energy and Power

1. Define and state the S.I units of the following;
a. Workdone
b. Energy
c. Power
2. A girl of mass 48 kg runs up 25 steps, each of height 0.2 m to reach the first floor of a storey building. The power expended by the girl is 400 W , calculate the time taken $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
3. An object of mass 0.5 kg has a kinetic energy of 25 J , calculate the speed of the object.
4. A body of mass 0.6 kg is thrown vertically upward from the the ground with a velocity of $20 \mathrm{~ms}^{-1}$. calculate the potential energy at its maximum height ( $\mathrm{g}=10 \mathrm{~ms}^{-2}$ )
5. A ball of mass 100 g falls from a height of 5 m onto a concrete floor and rebounds to a height of 3 m . calculate the energy lost. $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$.
6. A load is pulled 5 m along a horizontal floor by a constant force of 200 N which acts at $30^{\circ}$ to the floor. Calculate the workdone by the force

## Section C: Heat Energy

1. Define Heat and Temperature
2. State five(5) differences between heat and temperature
3. Explain three(3) effects of heat on an object
4. A relative density bottle of volume $50 \mathrm{~cm}^{3}$ is completely filled with a liquid at $30^{\circ} \mathrm{C}$. It is then heated to $80^{\circ} \mathrm{C}$ such that $0.75 \mathrm{~cm}^{3}$ of the liquid is expelled. Calculate the apparent cubic expansivity of the liquid.
5. A solid metal cube of side 10 cm is heated from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. If the linear expansivity of the metal is $1.2 \times 10^{5} \mathrm{~K}^{-1}$, calculate the increase in its volume.
6. A piece of brass of mass 170 kg has its temperature raised from $0^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. Calculate its increase in volume, given the density of brass at $0^{\circ} \mathrm{C}$ as $8.5 \times 10^{3} \mathrm{kgm}^{-3}$ and the linear expansivity as $5.7 \times 10^{-1} \mathrm{~K}^{-1}$
7. The length of a zinc rod at $23^{\circ} \mathrm{C}$ is 200 m . calculate the increase in length of the rod when its temperature rises to $33^{\circ} \mathrm{C}$. If the zinc rod at $23^{\circ} \mathrm{C}$ is used to make a square of perimeter 200 m , what is the new area of the rod at $33^{\circ} \mathrm{C}$. (linear expansivity of zinc $=2.6 \times 10^{-5} \mathrm{~K}^{-1}$ )
8. Define state three(3) areas of application of;
a. Conduction
b. Convection
c. Radiation
9. Explain how a vacuum flask minimizes heat loss to its surrounding

## Section D: Electrostatics

1. State the law of electrostatic
2. With a detail diagram explain charging by induction
3. sketch and label the diagram of a gold leaf electroscope and state two(2) uses of Electroscope
4. Explain how negative and positive charges are produced in the Lab
